Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice.
نویسندگان
چکیده
BACKGROUND Previous studies have implicated the cyclic adenosine monophosphate/protein kinase A pathway as well as FosB and dynorphin-B expression mediated by dopamine D1 receptor stimulation in the development of 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia. The magnitude of these molecular changes correlates with the intensity of dyskinesias. The calcium-binding protein downstream regulatory element antagonistic modulator (DREAM) binds to regulatory element sites called DRE in the DNA and represses transcription of target genes such as c-fos, fos-related antigen-2 (fra-2), and prodynorphin. This repression is released by calcium and protein kinase A activation. Dominant-active DREAM transgenic mice (daDREAM) and DREAM knockout mice (DREAM(-/-)) were used to define the involvement of DREAM in dyskinesias. METHODS Dyskinesias were evaluated twice a week in mice with 6-hydroxydopamine lesions during long-term L-DOPA (25 mg/kg) treatment. The impact of DREAM on L-DOPA efficacy was evaluated using the rotarod and the cylinder test after the establishment of dyskinesia and the molecular changes by immunohistochemistry and Western blot. RESULTS In daDREAM mice, L-DOPA-induced dyskinesia was decreased throughout the entire treatment. In correlation with these behavioral results, daDREAM mice showed a decrease in FosB, phosphoacetylated histone H3, dynorphin-B, and phosphorylated glutamate receptor subunit, type 1 expression. Conversely, genetic inactivation of DREAM potentiated the intensity of dyskinesia, and DREAM(-/-) mice exhibited an increase in expression of molecular markers associated with dyskinesias. The DREAM modifications did not affect the kinetic profile or antiparkinsonian efficacy of L-DOPA therapy. CONCLUSIONS The protein DREAM decreases development of L-DOPA-induced dyskinesia in mice and reduces L-DOPA-induced expression of FosB, phosphoacetylated histone H3, and dynorphin-B in the striatum. These data suggest that therapeutic approaches that activate DREAM may be useful to alleviate L-DOPA-induced dyskinesia without interfering with the therapeutic motor effects of L-DOPA.
منابع مشابه
Downstream regulatory element antagonistic modulator regulates islet prodynorphin expression.
Calcium-binding proteins regulate transcription and secretion of pancreatic islet hormones. Here, we demonstrate neuroendocrine expression of the calcium-binding downstream regulatory element antagonistic modulator (DREAM) and its role in glucose-dependent regulation of prodynorphin (PDN) expression. DREAM is distributed throughout beta- and alpha-cells in both the nucleus and cytoplasm. As DRE...
متن کاملRegulation of DREAM Expression by Group I mGluR.
DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a posit...
متن کاملDREAMing about arthritic pain.
The experience of acute pain serves a crucial biological purpose: it alerts a living organism to environmental dangers, inducing behavioural responses which protect the organism from further damage. In contrast, chronic pain arising from disease states and/or pathological functioning of the nervous system offers no advantage and may be debilitating to those afflicted. Despite recent advances in...
متن کاملEvaluation of Downstream Regulatory Element Antagonistic Modulator Gene in Human Multinodular Goiter
BACKGROUND DREAM (Downstream Regulatory Element Antagonistic Modulator) is a neuronal calcium sensor that was suggested to modulate TSH receptor activity and whose overexpression provokes an enlargement of the thyroid gland in transgenic mice. The aim of this study was to investigate somatic mutations and DREAM gene expression in human multinodular goiter (MNG). MATERIAL AND METHODS DNA and RNA...
متن کاملTitle of dissertation: STRUCTURAL CHARACTERIZATION OF METAL AND DNA BINDING TO DREAM PROTEIN, A CALCIUM SENSING TRANSCRIPTIONAL REPRESSOR IN PAIN MODULATION
Title of dissertation: STRUCTURAL CHARACTERIZATION OF METAL AND DNA BINDING TO DREAM PROTEIN, A CALCIUM SENSING TRANSCRIPTIONAL REPRESSOR IN PAIN MODULATION Aswani Kumar Valiveti, Doctor of Philosophy, 2006 Dissertation directed by: Dr. James. B. Ames Center for Advanced Research in Biotechnology DREAM (Downstream Regulatory Element Antagonistic Modulator) is the first reported calcium binding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological psychiatry
دوره 77 2 شماره
صفحات -
تاریخ انتشار 2015